تحقیق درباره دیود و انواع دیودها به همراه تصویر

  • تحقیق درباره دیود و انواع دیودها به همراه تصویر

    دسته بندی : فنی و مهندسی » برق، الکترونیک، مخابرات

    فهرست مطالب
    دیود چیست؟
    بایاس کردن اتصال P–N
    بایاس مستقیم
    بایاس معکوس
    ولتاژ شکست معکوس دیود
    پدیده شکست زنر :
    مقادیر حد در دیودها :
    – حداکثر ولتاژ معکوس
    الف ) حداکثر ولتاژ معکوس
    ب) حداکثر ولتاژ معکوس مؤثر
    ج ) ولتاژ معکوس قابل تحمل در وضعیت کار عادی :
    2- حداکثر جریان مستقیم :
    3- حداکثر جریان تکرای
    4- حداکثر جریان لحظه ای
    5- درجه حرارت محل پیوند
    انواع دیود :
    دیود معمولی
    دیود زنر
    استاندارد ولتاژهای زنر :
    توان دیودهای زنر
    ضریب حرارتی دیود زنر
    دیود نور دهنده یا LED
    فتو دیود ( Photo Diode ) :
    دیود خازنی یا دیود واراکتور
    دیود تونلی ( Tunnel Diode ) :
    دیود اتصال نقطه ای ( Point Contact Diode )
    تشخیص آند و کاتد و سالم بودن دیود :
    تشخیص آند و کاتد و سالم بودن دیود با استفاده از اهم متر آنالوگ :
    تشخیص آند و کاتد وسالم بودن دیود با استفاده از مولتی متر دیجیتالی :
    نامگذاری دیودها
    روش ژاپنی
    روش اروپایی
    روش آمریکایی
    جدول مشخصات دیود 1N4001 تا 1N4007

    دیود چیست؟
    دیودها از نیمه هادی های نوع N و P ساخته می شوند . ( برای آشنایی با نیمه هادی ها ، به صفحه آشنایی با نیمه هادی ها از همین وب سایت مراجعه فرمایید ) . هرگاه دو کریستال نیمه هادی نوع N و P به هم اتصال یابند الکترونهای آزاد نیمه هادی نوع N که در نزدیکی محل اتصال P–N قرار دارند به منطقه P نفوذ می نمایند و با حفره های کریستال نوع P ترکیب می شوند و به این ترتیب حفره هایی از بین می روند و الکترونهای آزاد به صورت الکترون های ظرفیت درمی آیند . عبور یک الکترون از محل اتصال سبب ایجاد یک جفت یون می شود زیرا وقتی الکترونی از ناحیه N به ناحیه P وارد می شود در ناحیه N یک اتم پنج ظرفیتی الکترونی را از دست داده و به یون مثبت تبدیل می شود و در مقابل ، در ناحیه P یک اتم سه ظرفیتی الکترونی را دریافت می کند و به یون منفی تبدیل می شود . به این ترتیب در اثر عبور تعداد زیادی الکترون از محل اتصال نیمه هادی ها ، در محل پیوند تعداد زیادی یون مثبت و منفی ایجاد می شود . این یون ها در کریستال ثابت هستند زیرا به علت پیوند کووالانس بین الکترونهای اتم ها ، نمی توانند مانند الکترونهای آزاد حرکت کنند . بنابراین در محل پیوند ناحیه ای به نام لایه تخلیه به وجود می آید که در آن حامل های هدایت الکتریکی یعنی الکترونها و حفره ها وجود ندارند . به ناحیه تخلیه ، ناحیه سد هم گفته می شود . یون های مثبت و منفی در ناحیه تخلیه سبب ایجاد میدان الکتریکی می شوند . این میدان الکتریکی با عبور الکترونهای آزاد از محل اتصال مخالفت می کند . هرگاه میدان ایجاد شده به حدی برسد که مانع عبور الکترون از محل اتصال گردد حالت تعادل به وجود می آید و به این صورت دیود کریستالی ساخته می شود . ولتاژ ایجاد شده در ناحیه تخلیه ، پتانسیل سد نامیده می شود . در شکل (1) ساختمان دیود نمایش داده شده است .

    شکل (1 (
    در این شکل یون های مثبت ومنفی در ناحیه تخلیه و میدان الکتریکی ایجاد شده بین یون ها و همچنین نیمه هادی های نوع N و P به خوبی نمایش داده شده است . در این شکل دایره های سفید رنگ ، بیانگر حفره ها و دایره های دنباله دار قرمز رنگ ، بیانگر الکترونهای آزاد در حال حرکت هستند . در ادامه می خواهیم به بررسی این موضوع بپردازیم که اگر ولتاژی به دو سر اتصال P–N اعمال شود چه اتفاقی روی می دهد .
    بایاس کردن اتصال P–N : هرگاه به دو سر اتصال P–N ولتاژی اعمال کنیم گوییم آن را بایاس نموده ایم . بایاس کردن اتصال P–N به دو صورت مستقیم و معکوس انجام می گیرد .
    بایاس مستقیم ( Forward Bias ) : اگر قطب مثبت منبع تغذیه را به نیمه هادی نوع P و قطب منفی منبع تغذیه را به نیمه هادی نوع N وصل کنیم ، دیود را در بایاس مستقیم یا موافق قرار داده ایم . در شکل (2) بایاس مستقیم دیود نمایش داده شده است .

    شکل (2)
    هنگامی که میدان الکتریکی ناشی از منبع تغذیه ، میدان الکتریکی پتانسیل سد را خنثی می کند ، منطقه تخلیه و پتانسیل سد از بین می رود و الکترونهای کریستال N به سمت محل پیوند رانده می شوند . این الکترونها وارد کریستال نوع P شده و در اثر ترکیب با حفره ها به الکترون ظرفیت تبدیل می شوند . الکترونهای ظرفیت از حفره ای به حفره دیگر می روند تا به انتهای کریستال و سرانجام به قطب مثبت منبع تغذیه می رسند . چنین به نظر می رسد که حفره ها در کریستال نوع P در خلاف جهت حرکت الکترونها حرکت می کنند و جریانی را به وجود می آورند ، در حالی که عملاً آنها بدون حرکت هستند . در بایاس مستقیم دیود ، اگر ولتاژ دو سر دیود را به تدریج از صفر افزایش دهیم ، در ابتدا جریان کمی از مدار عبور خواهد کرد . همین که ولتاژ دو سر دیود به حدود ولتاژ تماس پیوند P–N رسید جریان شروع به افزایش می نماید . این ولتاژ حدی را ولتاژ آستانه هدایت دیود می گویند . در شکل (3) منحنی مشخصه ولت – آمپر دیود در بایاس مستقیم نمایش داده شده است .

    شکل (3)
    بایاس معکوس ( Reverse Bias ) : اگر قطب مثبت منبع تغذیه را به کریستال نوع N و قطب منفی آن را به کریستال نوع P متصل کنیم ، دیود را در بایاس معکوس یا مخالف قرار داده ایم . در شکل (4) بایاس معکوس دیود نمایش داده شده است

    شکل (4)

    در این حالت الکترونهایی از قطب منفی منبع تغذیه وارد نیمه هادی نوع P می شوند و با حفره های مجاور ناحیه تخلیه ترکیب می شوند و به این ترتیب سبب افزایش عرض ناحیه تخلیه در نیمه هادی نوع P می شوند . همچنین در نیمه هادی نوع N ، الکترونهای اطراف ناحیه تخلیه جذب قطب مثبت منبع تغذیه می شوند و آن نواحی از الکترون تهی می شود و به این ترتیب در نیمه هادی نوع N نیز عرض ناحیه تخلیه افزایش می یابد . با افزایش ناحیه تخلیه ، پتانسیل سد نیز افزایش می یابد و این افزایش پتانسیل سد آنقدر ادامه می یابد تا پتانسیل سد با ولتاژ منبع تغذیه برابر شود و پس از آن عرض ناحیه تخلیه ثابت خواهد ماند . علت این امر این است که زمانی که پتانسیل سد با ولتاژ منبع تغذیه برابر می شود در نیمه هادی نوع N ، نیروی دافعه بین یون های منفی و الکترونهای قطب منفی منبع تغذیه مانع نزدیک شدن این الکترونها به ناحیه تخلیه می شود و در نتیجه عرض ناحیه تخلیه در این نیمه هادی ثابت می ماند . همچنین در نیمه هادی نوع P نیز ، نیروی جاذبه بین یون های مثبت و الکترونهای اطراف ناحیه تخلیه ، مانع دور شدن این الکترونها از این نواحی می شود و در نتیجه در این نیمه هادی نیز عرض ناحیه تخلیه ثابت می ماند .

 برای توضیحات بیشتر و دانلود کلیک کنید